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Stability Analysis of a Transmission Model  
for Influenza Virus A H1N1 

Nguyen Huu Khanh 
 

Abstract—  We study a non-linear mathematical model describing the transmission of  Influenza  virus A  H1N1. The model is represented 
by a system of differential equations depending on parameters. Mathematical analysis shows that dynamics of the spread of the influenza 
virus is determined by the basic reproduction number R0. If R0 ≤ 1, the disease free equilibrium is globally asymptotically stable, and if      
R0 > 1, the endemic equilibrium is globally asymptotically stable under some conditions. Lyapunov functional approach is used for proving 
the global stability of equilibria. A numerical investigation is carried out to confirmthe analytical results. 

Index Terms— Influenza virus, disease free equilibrium, endemic  equilibrium, basic reproductive ratio, stability, transcritical bifurcation.   
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1 INTRODUCTION                                                                     

Influenza, also called the flu, is a disease caused by a virus 
that affects mainly the nose, throat, bronchi and,  casionally, 

lungs.  

Many papers have studied mathematical models for influ-
enza virus. In 2003, Neil  and coworkers [9] constructed a 
mathematical model of influenza transmission simulating the 
effect of neuraminidase inhibitor therapy on infection rates 
and transmission of drugresistant viral strains. In [12], an es-
timation of the basic reproduction number R0 for pandemic 
influenza A H1N1 was made with the data from initial reports 
of laboratory confirmed pandemic influenza A H1N1.  
Recently, Pongsumpun [11], considered the model for the 
transmission of Swine flu, a new strain of type A influenza 
virus, with different probability of the patients who have 
symptomatic and asymptomatic infections. 

In this paper, we consider a mode depicting the 
transmission of influenza virus A H1N1. The model is given 
by a system of five differential equations depending on 
parameters. We suppose that the infectious component con-
sistes of symptomatic class and asymptomatic class;  and the 
birth and natural death rates have a common rate μ. By 
using the method of next generation matrix [4], we found a 
threshold R0 called basic reproduction number. In general, 
when R0 ≤ 1, the disease dies out andwhen R0 > 1, the disease 
persists in the population. If we suppose that the endemic 
equilibrium also exists for R0 < 1, although it is not true, then 
the bifurcation occurring in the model can be explained as a 
transcritical bifurcation. We concentrate our study on the 
globally stable stability of equilibria. This is obtained by 
Lyapunov functional approach. A numerical investigation is 
carried out by Mathematica software and AUTO software 
package [3] confirming analytic results. 

       The paper is organized as follows. In the next section, 

we introduce the structure of the transmission model, 
equilibria and the basic reproduction number. Section 3 deals 
with the stability of equilibria by using the Routh-Hurwit cri-
terion and  Lyapunov functional approach. Some numerical 
simulations are given in section 4. Finally, section 5 
summarizes this work. 

2     THE MODEL AND ITS BASIC PROPERTIES 
2.1  The structure of the model 

     We consider a model  for the transmission of pandemic 
influenza A H1N1. In the model, individuals are classified as 
susceptible (S(t)), exposed (E(t)), symptomatic infectious (I(t)), 
asymptomatic and partially infectious (A(t)) and recovered 
(R(t)).  Hence, the total population at time t is given by 

( ) ( ) ( ) ( ) ( ) ( )N t S t E t ( t A t R t= + + + + . By rescaling, we can consid-
er with N(t) = 1. We assume that the birth and natural death 
rates have common rate µ.  Susceptible individuals in contact 
with the virus progress to the exposed class at the rate  

( ( ) ( )) /E t ( t Nβ + , where β is the transmission rate. A propor-
tion 0 < p < 1 of talent individuals progress to the clinically 
infectious class I(t) at the rate k while the rest (1 - p) progress to 
the asymptomatic partially infectious class A(t) at the same 
rate k. Symptomatic and asymptomatic cases progress to the 
covered class R(t) at the rates 1γ  and  2γ .   

 

 

 

 

 

 

 
 

The model is given by the following differential equations 
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Fig 1.  Transfer diagram of the model 
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with the condition 
( ) ( ) ( ) ( ) ( ) 1S t E t ( t A t R t+ + + + = . 

Because of the absence of  the recovered class R(t)  in the 
first four equations, we can study the following reduced sys-
tem: 

dS S t E t ( t S
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2.2   Invariant set 

We establish the invariant set of the system (1) that is the 
set 

{( ( ), ( ), ( ), ( ), ( )) : ( ), ( ), ( ), ( ), ( ) 0}D S t E t ( t A t R t S t E t ( t A t R t= ≥ . 

This means that the solution of the system is still in D for t > 0. 
Hence, for the rest of the paper we only focus on system (1) 
restricted to D. 

2.3   Equilibria 

        To find equilibria, we set the right-hand side of the 
system (2) equal to zero. There are two equilibria in the     
(S, E, I, A) space: 

     1) The disease free equilibrium P0(1, 0, 0, 0). 

2) The endemic equilibrium P1(S*, E*, I*, A*) where 

     1

1
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It is seen that the disease free equilibrium P0 always exists. 
When R0 > 1 then 1 1( ) ( )( ) 0kp kpβ γ µ γ µ µ+ + − + + > .  This 
implies the endemic equilibrium P1 exists for R0 > 1. 

2.4   The basic reproductive ratio 

The dynamics of the model is decided by the basic repro-
ductive ratio R0, which is defined as the number of newly in-
fected cells that arise from any one cell when almost all cells 
are uninfected. By using  the method of next generating matrix 
[4], we found that 

1
0

1

( )
( )( )

kpR
kp

β γ µ
γ µ µ

+ +
=

+ +
. 

 As R0 < 1, the system has an unique equilibrium P0 and it 
is stable. For R0 > 1, the system has two equilibria P0 and P1, 
where P0 is unstable and P1 is stable. 

In the next section, we will show that for  R0 < 1 the trans-
mission is extinct whereas for R0 > 1 the virus still remain. 

3 STABILITY OF EQUILIBRIA 

3.1  Local stability of equilibria 

Theorem 1. The disease free equilibrium P0 is locally asymptotical-
ly stable if R0 < 1. Whereas, P0 is unstable if R0 > 1. 

      Proof  

      The Jacobian matrix at P0 is given by 

J 0 = 
1

2

0
( ) 0

0 ( ) 0
0 (1 ) 0 ( )

kp
kp

k p

µ β β
β µ β

γ µ
γ µ

− − − 
 − + 
 − +
  − − + 

 

     Eigenvalues of the above matrix are 

 1λ µ= − ,  2 2λ γ µ= − − , 

2
3

1 4
2

L L Gλ  = − + + 
 

,   2
4

1 4
2

L L Gλ  = − − + 
 

 

where   

1 2L kpγ µ β= + + − ,  1 1( ) ( )( )G kp kpβ γ µ γ µ µ= + + − + + . 

      Eigenvalues 1λ , 2λ  and 3λ  are always negative. If R0 < 1, 
then G < 0. It implies 4 0λ < . Therefore,  P0 is locally asymp-
totically stable. Whereas, for R0 > 1 then 4 0λ >  and P0 is un-
stable.                                                                                                  

Theorem 2. The endemic  equilibrium P1 is local asymptotically 
stable for R0 > 1. 

      Proof  

The local stability for endemic equilibria is determined by 
the Jacobian matrix of the system (1) at P1, which is 
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The characteristic equation is given by 
4 3 2

3 2 1 0 0a a a aλ λ λ λ+ + + + = , 
where  

0 1 2( )( )( )( * *)a kp X Yβ γ µ γ µ µ= + + + + ,

( )( )2
1 2 3 ( * * *) 2 ( * * *)a kp E ( S kp E ( Sγ µ β µ β= + + − + + + −  

            ( )( )24 2 ( * * *) 3 ( * * *)kp E ( S kp E ( Sµ µ β µ β+ + + − + + + −  

             ( )( )2
1 3 ( * *) 2 ( * * *)kp E ( kp E ( Sγ µ β µ β+ + + + + + −  

             1 2 (2 ( * * *))kp E ( Sγ γ µ β+ + + + − , 

( )2
2 6 ( * * *) 3 ( * * *)a kp E ( S kp E ( Sµ β µ β= + + − + + + −  

      ( ) ( )2 1 23 ( * * *) 3 ( * * *)kp E ( S kp E ( Sγ µ β γ γ µ β+ + + + − + + + + + − , 

3 1 2 4 ( * * *)a p kp E ( Sγ γ β= + + + + + − . 

By using Mathematica software, we can check that  the fol-
lowing conditions are satisfied 

0 0a > ,  1 0a > , 3 0a >  and 2 2
1 2 3 1 0 3 0a a a a a a− − > . 

According to the Routh-Hurwit criterion, the endemic equi-
librium P1 is locally stable.                                                       

3.2  Global stability of equilibria 

In this section we use Lyapunov function to prove the global 
stability of equilibria. 

Theorem 3. If  R0 ≤ 1 then the disease free  equilibrium P0 is global-
ly asymptotically stable in D. 

Proof 

We construct the following Lyapunov fuction 

( ) ( 1 ln )W t S S E a( A= − − + + + . 

where 
1

2kp ka
kp
µ ββ

γ µ
+ − −

< <
+

, 2 0kp kµ β+ − − > . 

      The derivative of W(t) along the curve of (2) is given by  

1'( ) 1 ' ' ' 'W t S E a( A
S

 = − + + + 
 

 

( ) ( )11 ( ) ( ) ( )S E ( S S E ( kp E
S
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+  ( ) ( )1 2( ) (1 ) ( )a kpE ( k p E Aγ µ γ µ− + + − − +  
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2

1 2
(1 ) 2 ( ) ( )S kp k kp E a ( A

S
µ µ β γ µ β γ µ−
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       Because 
1

2kp ka
kp
µ ββ

γ µ
+ − −

< <
+

 then we have 

1( ) 0a γ µ β+ − >  and 2 0kp k kpµ β+ − − − > .  

 Thus, '( ) 0W t ≤  for 0 1R ≤ . Note that '( ) 0W t =  if and only if 
S = 1, E = I = A = 0. Hence, the invariant set {(S, E, I, A):  

'( ) 0W t = } is the singleton {P0}, where P0 is the disease free 
equilibrium point. Therefore, by the Salle 's invariance princi-
ple [11], P0 is globally stable in the set D when 0 1R ≤ . This 
completes the proof.                                                                       

Theorem 4. If  R0 > 1 then the endemic equilibrium P1 is globally 
asymptotically stable in D under some conditions of parameters. 

Proof 

 We construct the following Lyapunov function 

( ) ( * ln ) ( *ln ) ( *ln ) ( *ln )W t S S S E E E a ( ( ( b A A A= − − + − + − + − , 

where a and b are suitable constants. 

The derivative of W(t) along the curve of (2) is given by  

* * * *'( ) 1 ' 1 ' 1 ' 1 'S E ( AW t S E k ( A
S E ( A

       = − + − + − + −       
       

 

( ) ( )* *1 ( ) 1 ( ) ( )S ES E ( S S E ( kp E
S E

µ β µ β µ   = − − + − + − + − +   
   

 

( ) ( )1 2
* *1 ( ) 1 (1 ) ( )( Aa kpE E b k p E
( A

γ µ γ µ   + − − + + − − − +   
   

. 

       By using equations in (2) for P1 and choosing suitable 
values for a and b, one can shows that '( ) 0W t ≤  for 0 1R > . 
Note that '( ) 0W t =  if and only if S = S*,   E = E*, I = I* and  A = 
A*. Therefore, by the Salle 's invariance principle [11], P1 is 
globally stable in the set D when 0 1R > . This completes the 
proof.                                                                                                                                                                                                                                    

3.3   Bifurcation analysis 

The change of local stability of the equilibria P0 and P1 can 
be explained by a transcritical bifurcation. In theory bifurca-
tion, transcritical bifurcation is a local bifurcation in which an 
equilibrium having an eigenvalue whose real part passes 
through zero. In transcritical bifurcation, an equilibrium exists 
for all values of a parameter and is never destroyed. Such an 
equilibrium interchanges its stability with another equilibrium 
at bifurcation value, where they collide. In our system, the 
disease free equilibrium P0 always exists. It is stable for R0 < 1 
and unstable for R0 > 1. The endemic equilibrium P1 exists for 
R0 > 1 and it is unstable. If we suppose that P1 also exists for   
R0 < 1, although it is not real, then bifurcation in the model (1) 
can be seen as a form of transcritical bifurcation at R0 = 1. 

4    NUMERICAL SIMULATION 
  In this section, we carry out a numerical investigation for 
the system (2) to illustrate the analytic results obtained above.  

For β = 0.15,  1γ  = 0.1, γ2 = 0.25, k = 0.5, p = 0.5, µ  = 0.25 we 
have R0 = 0.1514286 < 1. In this case, the disease free equilibri-
um P0 is globally asymptoticallly stable. With the condition 
E(0) = 0.01, E(0) = 0.01, I(t) = 0.021, A(0) = 0.05, the component 
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E(t), I(t) and A(t) tend to 0 as t approaches to +∞  (see Fig 2). 
This implies that the disease dies out. 
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Fig 2. Time series of S, E, I, A  for R0 < 1. 

For β = 0.5,  1γ  = 0.1, γ2 = 0.15, k = 1.5, p = 0.5, µ  = 0.15 we 
have R0 = 2.222226 > 1. In this case, the endemic equilibrium 
P1 is globally asymptotically stable. With the condition              
E(0) = 0.01, E(0) = 0.01, I(t) = 0.4, A(0) = 0.02, the exposed com-
ponent E(t) tends to 0.052, the infectious component I(t) tends 
to 0.185 and the asymptomatic infectious component A(t) 
tends to 0.168 as t approaches to +∞  (see Fig 3). This means 
that the disease remains in populations . 
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Fig 3. Time series of S, E, I, A  for R0 > 1 

Fig 4.  Bifurcation diagram of the system (2) in the plane (S, β) 

By using AUTO software package [3], one can detect the 
transcritical bifurcation in the model. 

     For p = 0.0155, k = 0.5, 1γ  = 0.025, 2γ  = 0.135, µ = 0.1, and 
let β  vary then we get a transcritical bifurcation occurring at 
the value β = 0:1038. The bifurcation diagram for this case is 
given in Figure 4.  In this figure, the line passing through the 
solution 1, 2 and 3 is the curve of disease free equilibrium, and 
the line containing the solution 4, 2 and 5 is the curve of 
endemic equilibrium. The solid line is for stable equilibria and 
the dashed line is for unstable equilibria. Transcritical 
bifurcation occurs at the solution 2, corresponding to R0 = 1. 
We also obtain the same bifurcation when other parameters 
are varied. 

5   CONCLUSION 
In this paper, a new type of model for infectious diseases of 

influenza A H1N1 is introduced and studied. The basic 
reproduction number, R0, of system (2) has been found by the 
method of the next generation matrix. The global stability of 
system (2) has been proved by using the Lyapunov function. 
When R0 ≤ 1, the system has only a disease free equilibrium P0 
which is globally stable. It implies that the disease dies out 
eventually. When R0 > 1, the system has a unique endemic 
equilibrium P1, which is globally stable under some 
conditions. This shows that the disease persists in the 
population and tends to a steady state. The local bifurcation, 
occurring at R0 = 1, is explained by the transcritical 
bifurcation. As results indicate that the spread of disease is 
very sensitive to contact parameter  β. The transmission will 
slow down if the value of β is decreasing. The obtained results 
show the way to reduce the transmission of the disease. 
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